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Abstract

The discrete approximation of a Dirichlet probiem on an interval for a singulariy perturbed
parabolic PDE is studied. A small parameter e multiplies the highest-order derivative. For
small values of the parameter, bounda,ry layers appear that give rise to difficuities when classical
discretization methods are applied.

For well-known special difference schemes the order of convergence is one and two, up to a
smali logarithmic factor, with respect to the time and space va,riables, respectively. To obtain
e-uniform convergence, we used a grid with nodes that are condensed in the neighbourhood of
the boundary layers. To obtain the better approximation in time, we used auxiliary discrete
problems on the same time-grid to correct the difference approximations. It allows us to receive
an arbitrarily large order of convergence in time if the solution is sufficiently surooth. In this
paper we develop effective parqllel algorithms to solve the discrete equations based on defect '

correction. To construct such algorithms, we use a modified Schwartz alternating process.

1. Introduction
Special e-uniformly convergent difference schemes for singularly perturbed boundary value problems
for parabolic equations are well developed, see, e.g., [1]*[3], t5]-t7]. If the problem data are sufficiently
smooth, for the parabolic equations without convection terms, the order of e-uniform convergence
for the scheme that was studied is (?(.nf-2ln2N+l6t), where.l{ and.ny'6 denote, respectively, the
number of intervals in the space and time discretization.

In [1, 2l we have developed an algorithm based on the defect correction principle rvhich achieves
a high order of accuracy with respect to the time variable and the second-order accuracy in space.
In [7] parallel computational methods were introduced that a,llowed us to accelerate the numerical
.otntiol of singularly perturbed boundary value probiems for parabolic reaction-diffusion equations.
It is attractively to use both technique as defect correction as parallel algorithm as well.

In the present paper we develop a new parallel computational method to solve the system of
grid equations arising when the defect correction technique is used for an approximations of the
boundary value problem. By this way, we can achieve a high order of accuracy for the time variabie,
maintaining e-uniform convergence high-order accuracy in time, as well as a high efficiency of the
algorithms due to parallel computations. It should be noted that this parallel method does not
require iterations at each time level-
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2. Problem formulation
On the domain G :_ (0, 1) x (0,7], with the boundary ^9 : G \ G we consider the boundary valueproblem for singularly perturbed parabolic equation

Lp. r1u(r , t )  :  
{ r 'o{ r ,D# 

-  c( r , t )  -  p( r , r )#}  u( r , t )  :  f  ( r , t ) ,  ( r , t )  e  G,
u ( r , t )  :  g ( r , t ) ,  ( c , t )  e  ,S . ( 2  1 )

H e r e , S : 5 o U , S . t ,  5 1  = { ( r , t )  :  L = 0 o r t r = 1 , 0 <  t 3 T } , 5 6  = { ( r , f ) :  r € [ 0 , 1 ] ,  f  = 0 ] ;
a(x, t) ,  c(r , t ) ,  p(r , t ) ,  f  ( r , t ) ,  (n, t)  e G, and e@,t),  (r , t )  e s aie suff ic ientry 'smooth and bounded
functions, e takes any value from (0,1r.

When the pararneter e tends to zero in (2.1), in the neighbourhood of the lateral boundary layers
of parabolic type appear in the solution.

For problem (2.1) we are to construct a numerical method that has a higher order of accuracywith respect to the time variable and, in addition, admits parallel computat[ns for the solution oithe difference equations.

3. Difference scheme on special mesh
To solve problem (2.1) we first consider a classical finite difference method. On the set G we introduce
the rectangular grid

L r h :  A  X  A O , ( 3 . 1 )
where D is the (possibly) non-uniform grid of nodal points, ri , in [0, 1], a.,0 is a uniform grid on theinterval [0' 7]; N and N6 are the numbers of intervals in the grids b u"a ao respectively. We definer : TlNo, hi : ri\r - ri, h : rnoxi hi, h < MlN, Gn = G nGn,Sn : i fi Gn, M is suffflcientiy
Iarge positive constant, independent on e.

For problem (2.1) we use the difference scheme [4.l
. l \6 . \z( r , t )  :  f  (x , t ) ,  ( r , t )  e  G1,  z(x , t )  =  p(r , t ) ,  (u , r )  e  56, (3.2 )

'* 'here / \6.212(x,t)  :  {e2 a(r, t )6; ;  -  c(r , t )  -  p(r , t )6;}  z(r , t ) ,

5; ;  z (r" ,  t )  :  2 (hi-  1 + hi  )-  r  [6,  z (rn,  t )  -  672 (r i ,  t )1,
6"2(r,t) and 6,2(r,t), 672(z,t) are the fonward and backward differences.

To provide an e-uniform convergence of the difference scheme s'e use a speciai mesh, condensed
in the neighbourhood of boundary la5rers [1, 2, 5, 6]:

u h  = a  \ o ) X a r 6 (3.3)

k + 2 k s < [ " ] * 2 n - 2 , (3.4)

H:.:.?g : .Do_(s.r), D* : o.(o) is a special pi,ecewi,se uniform mesh, o = o1s.s;(s,N) =
minfdl4,melnl/], where ?: T<1.?1 is an arbitrary positive number. The mesh "ti"l'is con,structed as fol lows. The intervai [0,1] is divided in three parts [0,o], Io,r _ o], i1_ a,1],0 < o < 114. In each part we use a uniform grid, with l//2 subintervals in [o,1 - o] and with Nilsubintervals in each interval [0, o] and [1 - o, 1].

We assurne that at the corner points ,50 n 5r the following conditions hold
Ak }ko

a r n P @ , t )  :  
a t r r P ( r , i )  

-  o ,  k + 2 k s  <  |  a l + 2 n ,
a,t+fro ",

A;k Atk"f (u't,) = s'

where Io  ] is  the in tegerpar t  o f  anumber d,e]0t r_2 0 is  an in tegernumber.  We a lsosupposethat I a]+2n ) 2. we denote by E (")(G) = ,''a/z(G) the Holder rpu.", where a is an arbitrarypositive number.
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4. Difference schemes based on the Schwartz method
For problem (2.1) we describe the Schwartz method that ad.mits parallel computations on P ) 1

i  a - lsolvers | / l.
4.1.'duppose, the set of subdomains

D k ,  k = 1 , . . . ,  K ( 4  1 \

with boundaries fk, f& : f (De ) :,Dk \Dfr, forms the covering of the set D: D : l)f=rDe. Let each
subdomain Dtn I be multiply connected and be formed by the union of P, P ) 1 nonoverlapping
domains (some of them maY be emPtY):

P
D k  : U  n f ,  k = ! , . . . , K ,  D l  n D l  = A ,  t , *  i .

p:L

We set

c l :  o l  x  (0 ,?1,  GI f t \  :  Df ;  x  ( t " - t , t " f ,  t "  €' , .o ,  p  -  1 , . .  . ,P,  k

(4.2)

= I , . . . , K .  ( 4 . 3 )

W-e denote by Dtrl the union of the subdomains D1,.. ,DK which do not have the set De:
plxl = lJLr,o+rDt. We denote the minimal width of the overlapping of the sets Dk and Dlft] by
d&.  Let  5  denote the least  va lue of  6k,  k  =1, ' . . ,K,  i .e .

0,1r,t1" 
p(rl ,x2) - 5, , t  eDk, * ' ,  e Dlr l ,  , t . n 2  d  I  n k  n  n [ ' l  f

,  4  Y -  |  "  J )
( 4  4 \

(4 .5)

(4.6)

k :  1,  . . . ,K, p(r l , r2) is the distance between the points rr ,  12 eD-
Suppose that 'l

d :  d 1 a . n ; ( e )  > 0 ,  € € ( 0 , 1 1 ,  
, . i l d r i [ e - 1 6 1 a . a y ( t ) ] >  

0 .

We find the function u(x,t) by the solution of the problems

t -

Lp. ;u{  ( r , t )  :  f  ( r , t ) ,  ( r ,  t )  e  G;( t " ) ,

for (r , t)

for (t, t)

Here u(r
D x lt'-

L .  (  u ( t , t ; t " - t ) ,  k = 1 '  l
u F  @ , r )  :  i  

- ; ; - , ,  "  
;  _  : '  l ,  ( x , t )  e  s ! ( t " ) ,  p  :  1 , . . . , P

1 u ? ( r , t ) ,  k > 2  )
e G! (t'); where

( "f (r,t), (r, r) e Gllt"), p : \,. . . , p, I
u E  ( r , t )  :  {  a ( r , t ; t " - r ) ,  k :  I ,  )  \

|  :E; :  _ , , '  ; :  " '  | ,  ( r , r )  e  G( i " ) \Ut=,C. ie)  t
[  , 5 1 i " , t ; ,  k >  2  )  )

:
€G ( t ' ) ;  / c : 1 , . . . , K ;

u ( r , t )  :  u #  ( * , t ) ,  ( r ,  t )  e  G ( t ^ ) ,  t n  e 6 s ,  n  : 0 , 1 , . '  . , N o  -  1 .

, t ; t n - r )  :  g ( r , t ) ,  ( r , t )  e  S ( t ^ -1 )nS ,  u ( r , t ; f - t )  -  u ( r , t n - t ) ,  ( x , t )  e  G( t " ) ,G1 t ' 1  :
I  +nl

r  e  l .
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4'2' \t'e give the difference scheme that approximates differential scheme (4.6). (4.) with p

parallel solvers. we introduce the rectangular grids on each set Gj:

Gln:Gl )eo, where Gn:Gn,.ry or 6n :  Girs.r l .
we find the functiorrs "* @,fl at the strip Gn(t") by the sorution of such problems

ts
o.ztQf @,t)) = f  (n,t) ,  (r ,r)  e Gf;r( t^),

i  , ,  I  Z (x , t ; t " - r ) ,  k  :  l ,  ], F @ , r )  : {  - l ' , " ' "  '  r  ( . r t )€s l n $ \ ,  p = ! , . . . , p ,
t  z T ( r , t ) ,  k > 2  [ '  \ * ' u

for (r,t) eGIr(t )t  where

(4.7)

1 4  R \

" *  ( r , r )  :  
{

h

z f ;  ( n , t ) ,  ( x , D  e c : h ( * ) ,  p  =  1 ,  . . . , p ,
7 (x , t ; tn - t ) ,  k :  I ,  I  _
,*  1r , t7,"  r  r ;  ]  

'  (z '  r )  e G(t^)  \  uplGi( t " ) ,

HereT(r , t ; tn-r1 = y(1,^t) ;  (x, t )  e Sn(t"- t1f lS,Z(r , t ;*- t1 :  z(r ,*-L)+Q(x, t ) , (z,r)  e Gn(t  ) ;G(t")o =G(t"))Go-If the defect correction is noi used, we have @(r,t) = 0, 1'*, ' i1'Z'G1i-&\' 
/)

we are to find the function z(n,t), (r,t) e G1r, i.e., the solution of difierence scheme (4.), (4.2).For these shemes we shall use the operator form

f o r  ( t , t ) e G n ( t " ) ;  k : r , - - . , K ,  t n€- o 6 .  W e d e f i . n e t h e f u n c t i o n z ( x , t ) a t t h e s t r i p G ; , ( t ' )  b ythe relation
z(a, t )  :  zF (x , t ) ,  (c , r )  e  Gn( t^) ,  tn  €.  ao. (4.e)

Q(z(r , t ) ; , / ( . ) ,  d( . )  = 0,  ( r , r )  e Gn(t") , (4.10)

I  zp.z)@,t)  -  zu.)( t , t )  lS MN;r,  @,t)  e G1,, (4 .11 )

(4.12)

(4.13)

where $(r,t) =. g.

_n" theodecomPosition method of the domain (4.), (4.7) the intermediate problems on the subsets
Drp :  D i fn l )D1 are  so lved in  para l le l  fo r  a l l  p :1 , . . . ,p .

The difference scheme (4'), (4-7) for P : 1 is the scheme for the sequential computations.
4.3. If condition (a.5) holds, by the comparison theorems we get the estimate

yj-"f z1s.z|(r,t) and zg.1(ttt) are the solutions of difference schemes (3.2), (J.1) and (4.), (4.7),(3.1), respectively.
When using the difference schemes (4.), (4.7), on grids (3.1) or (3.8), under condition (4.5), weobtain the following estimates for the solution of bound.ary value problem (2.1):

I u(r,t) - ze.) (", r) l< M (e-L N-r a r), (2, r) e Go(r.r),
lu (x , t ) . -  ze . )  ( r , r )  l<  M(w-z  h2N+r ) ,  (e , t )  e  G i tu . r l .
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5. Improved time-accuracy
b.1. For the difference scheme (3.2), (3.3) the error in the approximation of the partial derirative
@ lAt) u(r,t) is caused by the divided difference 67 z(r,t) and is associated with the truncation error
given by the relation

d 8 2 4 3

Atu(r , t )  
-  67u(t , t ) :2- t  r fuu(r , t )  -  6- t  , ' f r5u(r , t  -  8) ,

where 19 e [0,r]. Therefore we now shall use for the approximation of @l?t)u(r,t) the expression
57u(x,t)  + 1677u(r, t )  12, where 577u(r, t )  = \r7u(r, t  -  r)  ,  \ r1u(r, t )  is the second central  div ided
difference. We can evaluate a better approximation than (3.2) by defect correction

L6.21 z" (n, t) :  f  (r,  t) + p(n, t)2-r 1571 u(r, t), ( 5 .1 )

r is step-size of the grid Ds; zc(x,t) is the "corrected" solution. Instead of 577u(r,t) we shall use
tsf "@,t), where z(r,t), (r,t) e Gh(s.g) is the solution of the difference scheme (3.2), (3.3). The
nev{ solution zc(r,t) has a,n accuracy of. O(r2) with respect to the time variable.

We denote by 617z(r,t) the backward difference of order /:

6 s  z ( r , t ) :  ( d l - r t z ( r , t ) - d p t t z ( r , t - " ) )  / r ,  t )  I r ,  /  >  1 ;

5 o 7  z ( r , t )  =  z ( x , t ) ,  ( t , t )  e G n '

5.2. On the grid G6 we consider the finite difference scheme (3.2), writing

/\1s.z1z1) (r,t) :  f  (r, t),  (r, t) e G6,
" ( t )  @,t )  :  p( r , t ) ,  ( r , t )  e  57.

When constructing difference schemes of second order accuracy in r in (5.1), instead of 577u(x,t)
we use 5272(r)(r,t), which is the second divided difference of the solution to the discrete proliem
(5.2), (3.3). Then for the boundary value problem (2.1) we now have the discrete problem:

f  o . r l

t (z) ( r , t )  =  p( t , t ) ,  (c , t )  e  ,96.

Here z(r)(c,l) is the solution of the discrete problem (5.2), (3.3), and the derivative {72u(r,0)
is obtained from the equation (2.1). We shall call zQ)(z,t) the solution of difference scheme
(5.3), (5.2), (3.3) (or short ly, (5.3), (3.3)).

5.3. For simplicity,'we take a homogeneous initial condition:

p ( c , 0 )  : 0 ,  r  e D . (5.4)

Under condition (3.4) and (5.4), the following estimate [2] holds for the solution of problem (5.3)
(or more str ict ly (5.3),  (5.2) )

lu (x , t )  -  z (2 )  ( " , r )  |  <  M lu - t  N-1  +12 ] ,  ( r , r )  e  Gn( r . r ) ,

l u ( r , t )  -  z Q )  ( r , t )  |  S M  l . l / - 2 h 2 / / + 1 2  ] ,  ( z , r )  e  G r , ( r . s ) .

Theorem 5.1 Let conditi,on (5.a) hold and assume in equati,on (2.1) that a, c, P, f € H @+zn-z) 16),
g e H (a*2n)(G), * ) 4, n21 and,let condit i .on (3.a) be sati,sf iedforn:!.  Then for the soluti ,on
of di,fference scheme (5.3), (3.3) (5.3), (3.1)/ the esti,mate (5.5) holds.

(s.2)

(5.5)
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In a similar way we could construct difference schemes with an arbitrary high order of accuracyO ( w - z h 2 l /  * r n ) ,  n > 2 .
Numerical results and their analysis, however, without parallel computations, can be seen in[1, 2]' These results demonstrate the efficiency of the defect correction technique in improving theaccuracy q'ith respect to the time variable. But the implementation of the ,.h"-u. in'[i, 2]?or afiner time'grid may take,,generally speaking, a great ae* of time. Therefore the parallel methodsfor the finite difference schemes based on the defect correction technique are required.

6- Parallel method based on defect correction
6.1. on the grid Gn we consider the finite diference schemes (4.), (4.7),writing

QQ@@,r) ;  / { t )1 . ; ,  4( r ) ( . )  =  0,  ( r , t )  e  Gn( tn) ,
where 7(r)(r,t):  f  (r, t),  OQ@,il - 0. To improve accuracy in t ime we solve the problem

QPru@, t ) ;  y@( . ) ,  o@( . ) :  o ,  ( x , t )  eGn( t ^ ) ,
where

: T

) 2r,

(6 .  1)

(6.2)

y@ @,f :  f (a,r)  *  {  P(r, t )2-r '  f f i  '@,0),  t
I  p( r ,  t )2- r  r  6r7z( t )  ( r , t ) ,  t

4@ @,1 -  z( r )  @,tn)  _  ze)  ( r , tn- t ) .
6'2' For the soiution of difference scheme {6.), (4.7) the.estimate (5.5) hotds (condition (4.b)and the hypothesis of rheorem 5.1,are assumed to be fuifiited). 

\ /

Theorem 6']- Let the hypothesi.s of Theorem 5.7 be true for the d,ata of bound,ary ualue problem(2'1)' Then, und,er condition (4'5), the soluti,ons of the alternating d,iffeince schemes (6.), (4.7),(3 .3)  (orschemes(6. ) , (4 .7) ,  (3 .1) , )  conuerges,  asN,  t ry '6*+m, to ther i t  t ionof  thebound,aryualueproblem e-uniformly (for a fired ualue of the parametei'ri. For the solutions of the d,ifference schemesthe estimates (5.5) hold.

The similar finite difference constructions can be used to develop the parallel domain decompo-sition scheme with high-order accuracy in time.

Conclusion
In this paper we have constructed the parallel ddfect correction procedure that can easily be imple-mented in order to improve the time-accuracy, still obtaining e-uniform second-order accuracy inthe space discretization' as well as to paralleliie computational performance of the finite differenceschemes for a parabolic PDE.
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